
Storage Ring Improvements and Trade-Offs          L. Emery

SR Improvements and 
Trade-Offs

L. Emery
(based on past presentations of M. Borland, G. Decker)

May15, 2002

Storage Ring Improvements and Trade-Offs          L. Emery

SR Improvements and 
Trade-Offs

L. Emery
(based on past presentations of M. Borland, G. Decker)

May15, 2002

Storage Ring Improvements and Trade-Offs          L. Emery

SR Improvements and 
Trade-Offs

L. Emery
(based on past presentations of M. Borland, G. Decker)

May15, 2002

Storage Ring Improvements and Trade-Offs          L. Emery

SR Improvements and 
Trade-Offs

L. Emery
(based on past presentations of M. Borland, G. Decker)

May15, 2002



Storage Ring Improvements and Trade-Offs          L. Emery

Outline

� Discussion of general design limits

� List of enhancements

� Global, local, injection

� Costs and other issues

Storage Ring Improvements and Trade-Offs          L. Emery

Outline

Discussion of general design limits

List of enhancements

Global, local, injection

Costs and other issues

Storage Ring Improvements and Trade-Offs          L. Emery

Outline

Discussion of general design limits

List of enhancements

Global, local, injection

Costs and other issues

Storage Ring Improvements and Trade-Offs          L. Emery

Outline

Discussion of general design limits

List of enhancements

Global, local, injection

Costs and other issues



Storage Ring Improvements and Trade-Offs          L. Emery

Design Limits

� The impossible

� Fundamental accelerator optics limits

� The possible but with undesirable 
consequences

� Mostly low lifetime (therefore need more 
frequent injections or need more bunches)

� Lower charge per bunch

� Injection losses, meaning ID radiation damage
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� The possible and easy: Already done!

� Top-up, low emittance, and low betay for small 
aperture of narrow gap ID
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The Impossible

� Arbitrarily low emittance.

� Accelerator optics (new magnets) and sextupoles 
so strong that stable phase space is too small for 
accumulation.

� Focusing ⇒ chromatic correction (sextupoles) ⇒ 
nonlinearity ⇒ instability of oscillations
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The Impossible

� Injection requires β close to L/2.

� Very small β at center implies large β at ends.

� Injection with accumulation impossible for very 
large β, around 100 m.

Optimized beta Low betaHigh beta

� Arbitrarily small or large beta functions in 
center of straight sections (βx = σx/σx')
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The Impossible

� Arbitrarily long straight sections (removing 
quadrupoles or moving them together)

� Not compatible with small apertures. Need to 
keep the quadrupoles and some space between 
them for flexible accelerator optics matching.

� Arbitrarily high bunch current even with 
feedback.

� Limited by beam's own field scattered by small 
apertures
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Fundamental Trade-offs for the 
Possible

� Bunch density vs lifetime

�

� Stronger focusing vs injection beam loss

� Nonlinearity of the stronger sextupoles.

� Customized beta functions (σx, σx') vs 
injection beam loss

� Larger σx at ends of VC + small apertures.

� Smaller gap or longer ID chambers vs 
injection beam loss + lower bunch charge
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Global Enhancements

� Further reduction in emittance to <3nm lattice

� Reduction in coupling

� Increased beam current

� Higher bunch current

� 6-7 GeV configuration (most users benefit)

� Enhanced beam stability

� Regulate beam size
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Local Enhancements

� Converging beta function

� Other customized beta functions
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Injection Enhancements

� Center beam in ID VC aperture

� Bunch purity

� Transparent top-up

� Reduce booster emittance
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Reduction in Emittance to < 3nm 

� Increases brightness by a good fraction (10%'s)

� Shorter lifetime

� May require higher booster charge, more 
frequent topup injection, more bunches

� Requirements: Stronger sextupoles, corrector 
magnets, one or more strong wiggler (option), 
which uses up one straight section
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� I.e., lower vertical emittance (typically, 0.5% of εx)
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Increased Bunch Current

� For single bunch used in hybrid bunch pattern, 

� Presently use 5 mA

� Shorter lifetime for bunches

� Need feedback and/or stronger sextupoles to prevent 
instability.
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6-7 GeV Optimization

� Vary energy while maximizing beam current to 
keep thermal load constant.

� Benefits: higher brightness for most users if right 
IDs are available

� Costs: very bad for high-energy x-ray experiments 
and (probably) timing experiments
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Enhanced Beam Stability

� Supports higher brightness, i.e., stability 
requirement is relative to beamsize.

� Upgrades to diagnostics systems.

� How good is good enough?
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Regulate Beam Size

� Eliminate gap-dependent beam size changes

� Vertical beamsize varies by at most ±5%, 
horizontal, by ±3%.

� New skew quad magnets near IDs

� Small magnet such as in ID4-CPU

� Compensating horizontal wiggler (option) for 
horizontal beam size change
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Converging Beta Function

� Aids x-ray optics by about x2 by prefocusing the 
photon beam

� Poor lifetime

� Distortion of lattice in two sectors, stronger 
sextupoles, possible emittance degradation

� Poor injection, ID damage possible
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Converging Beta Function

� Beamsizes for converging betax
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Long Straight Sections

� Very flexible, higher flux, multiple undulators

� Costs: new magnets, new chambers, ring distortion, 
...

� Requirement: preserve SR acceptance by increasing 
aperture

� Easy for large gap undulator

� More difficult for small gaps: need in-vacuum ID
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Center the Beam in Apertures and 
Magnets

� Benefits: 

� fewer trips

� easier accelerator optics correction

� better injection efficiency

� Costs: need to realign beamline
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Injector Description
Low-Energy Injector Schematic

PAR
325 MeV

30.7 m circ.

drive laser

photo-
injector

thermionic
injectors

325-MeV linac
to 7-GeV booster

to LEUTL

(M. Borland)
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Injector Description
High-Energy Injector Diagram

7-GeV, 2-Hz 
Booster

APS ring

BTS transport line
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Bunch Purity

� Costs: operational complexity

� Current method of cleaning (using scrapers 
and global beam excitation) not compatible 
with top-up

� Need new idea or bunch-by-bunch feedback 
system
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Transparent Top-Up

� Benefits: do top-up at shorter interval ⇒ 
operate at lower lifetime

� Costs: unknown

� Other requirements:

� New ideas (e.g., bunch-by-bunch feedback)

� New kicker chambers

� Redo septum FF compensation
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Low-Emittance Booster Lattice

� Emittance reduced from 130 nm-rad to 100 
nm-rad.

� Improved SR injection for reduced radiation 
damage to IDs

� Costs: small, need injector studies time during 
non-topup User run.
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